ALLOY 400 DATA SHEET

UNS N04400

//// Alloy 400 (UNS designation N04400) is a nickel-copper solid solution alloy with high strength over a wide temperature range. It can only be hardened by cold working. The alloy has excellent resistance to a variety of corrosive environments from mildly oxidizing through neutral and in moderately reducing conditions. Alloy 400 also performs well in marine and other nonoxidizing chloride solutions.

//// Alloy 400 was one of the first nickel alloys, its history dating back to the original nickel-copper ore mined in Canada in the late nineteenth century. The composition of the original ore is roughly what the chemistry for Alloy 400 is today.

//// As with commercially pure nickel, Alloy 400 is low in strength in the annealed condition and is consequently offered in a variety of tempers which increase the strength of the material.

//// Vales and pumps; //// Crude petroleum stills; //// Pump and propeller shafts; //// Process vessels and piping; //// Marine fixtures and fasteners; //// Boiler feedwater heaters; //// Chemical processing equipment; //// Heat exchangers. //// Gasoline and fresh water tanks;

Product form	Specifications							
	ASTM	ASME	AMS	Military				
Plate sheet and Strip	B 127	SB 127	4544	QQ-N-281	10204 - 3.1 .B			
Smls Pipe and Tubing	B 163 /B 165	SB 163/ SB 165	4574	MIL-T-1368/MIL-T-23520	10204 - 3.1 .B			
Rod, Bar and Forgings	B 164/ B 564	SB 164 /SB 564	4675	MIL-T-24106/QQ-N-281	10204 - 3.1 .B			
Wire			4730/4731	QQ-N-281	10204 - 3.1 .B			

с	Mn	s	Si	Cu	Ni + Co	Fe	AI	Р
0.30 max	2.00 max	0.024 max	0.50 max	28.0-34.0	63.00 min	2.50 max	0.02	0.005 max

////TYPICAL ROOM TEMPERATURE TENSILE PROPERTIES

Condition	Yield Strength 0.2% offset		Tensile Strength		Elongation	Elastic Modul	us (E)
	psi	MPa	psi	MPa	% in 2"	psi	GPa
Allealed	35000	240	75000	520	45	26 x 10 ⁶	180
Hot rolled as rolled	45000	310	80000	550	30	26 x 10 ⁶	180

//// SHORT TIME ELEVATED TEMPERATURE PROPERTIES

The following table illustrates the short time tensile properties of Alloy 400 at temperatures above room temperature. Low temperature properties are added for comparison.

Temperature		Yield Strength 0.2% offset		Tensile Strength		Elongation
°F	°C	psi	MPa	psi	MPa	% in 2"
70	21	31000	215	82000	565	48
200	93	30000	205	80 000	550	47
400	204	26000	180	75000	520	45
600	316	25000	175	73000	505	46
800	427	23000	160	70000	480	48
1000	538	21000	145	53000	370	40

Density	Magnetic Permeability	Specific Heat
0.318 lb/in ³	75° F, 200 oersted 1.0002	0.10 Btu/Ib-°F
8.80 g/cm ³		430 J/kg-°K
Specific Gravity	Melting Range	
8.83	° F = 2370-2460	
	° C = 1300-1350	

Temperature		Mean Linear E	xpansion⁵	Thermal condu	ctivityª	Specific Heat ^a		Electric Resisti	vity ^{a,c}
°F	°C	10 ⁻⁶ in/in/°F	10 ⁻⁶ cm/cm/°C	Btu/h-ft-°F	W/m-°K	Btu/lb-°F	J/kg-°K	Ω -circ mil /ft	μΩ.m
-320	-200	-	-	-	-	-	-	205	0.360
-300	-180	6.1	11.1	113	16.5	0.050	223	-	-
-200	-130	6.4	11.4	130	18.2	0.078	320	-	-
-100	-70	6.7	12.1	139	19.8	0.088	378	-	-
70	21	-	-	151	22.0	0.102	427	307	0.511
200	100	7.7	14.2	167	24.0	0.105	445	322	0.537
400	200	8.6	15.2	193	26.9	0.110	459	337	0.559
600	300	8.8	15.7	215	30.1	0.114	470	346	0.574
800	400	8.9	16.1	238	33.4	-	-	355	0.587
1000	500	9.1	16.3	264	36.5	-	-	367	0.603
1200	600	9.3	16.6	287	39.4	-	-	379	0.620
1400	700	9.6	17.0	311	42.4	-	-	391	0.639
1600	800	9.8	17.4	335₫	45.5ª	-	-	403	0.658
1800	900	10.0 ^d	17.7	360 ^d	48.8 ^d	-	-	415	0.675
2000	1000	10.3	18.14	-	-	_	_	427	0.692

 $^{\rm a}$ These values also apply to Alloy R–405, the free machining version of Alloy 400.

^b Annealed material. Between 70°F (21°C) and temperature shown. ^c Annealed material. ^d Extrapolated

2/5

//// Alloy 400 exhibits resistance to corrosion by many reducing media. It is also generally more resistant to attack by oxidizing media than higher copper alloys. This versatility makes Alloy 400 suitable for service in a variety of environments.

//// Alloy 400 does not perform well in highly oxidizing acids such as nitric or nitrous acids. In such environments, high chromium stainless steels should be considered.

//// In moderately reducing acids, neutral or alkaline solutions, **Alloy 400** may be considered for use. The alloy is resistant to most alkalies, salts, organic substances and atmospheric conditions. The alloy is a consideration for cooler alkaline caustic conditions, although high temperature, high stress and high concentrations of caustic have produced caustic stress corrosion cracking in the material. **Alloy 400** is used in reducing acids such as sulfuric and hydrochloric, especially in the absence of aeration and oxidizing species.

//// Alloy 400 is exceptionally resistant to chloride stress corrosion cracking.

//// The alloy excels applications requiring service in waters, including sea and brackish water.

//// Alloy 400 is attacked in sulfur-bearing gases above 700 °F (371 °C) and molten sulfur attacks the alloy at temperatures over 500 °F (260 °C).

Test Environment		Temperature		Corrosion Bate
Name	Media & Concentration	°F	°C	mpy
Acetic Acid	C.H.OAll concentrations	70	21	<4.00
Caustic	4 % NaOH	68	20	0.16
Caustic	23 % NaOH	220	104	0.20
Caustic	50 % NaOH	Boiling	Boiling	<1.00
Caustic	75 % NaOH	275	135	1.70
Formic Acid	40 % CH ₂ O2	Boiling	Boiling	2.70
Hydrochloric Acid	0.5 % HCI-No Aeration	Boiling	Boiling	29.00
Hydrochloric Acid	1 % HCI-No Aeration	Boiling	Boiling	42.00
Hydrochloric Acid	5 % HCI-No Aeration	Boiling	Boiling	44.00
Hydrochloric Acid	Up to 10 % HCI	86	30	<10.00
Hydrochloric Acid	12 % HF	182	83	22.00
Hydrochloric Acid	25 % HF-Saturated w/ Air	86	30	37.00
Hydrochloric Acid	25 % Purged w/ Nitrogen	86	30	0.20
Hydrochloric Acid	50 % HF-Saturated w/ Air	176	80	39.00
Hydrochloric Acid	50 % Purged w/ Nitrogen	176	80	0.50
Hydrochloric Acid	Anhydrous HF	80	27	3.20
Hydrochloric Acid	Anhydrous HF	200	88	4.70
Hydrogen Fluoride Gas	HF	1112	600	13.00
Phosphoric Acid	H ₃ PO ₄	176	80	<10.00
Potash Liquor	КОН	235	113	0.60
Sulfuric Acid	5 % H ₂ SO ₄	214	101	3.40
Sulfuric Acid	9 % H ₂ SO ₄	219	104	7.50
Sulfuric Acid	50 % H ₂ SO ₄	253	123	650.00
Sulfuric Acid	96 % H ₂ SO	560	293	3300.00

////AQUEOUS CORROSION DATA

////The anneal cycle conducted on Alloy 400 is typically in the 1 400 °F to 1 800 °F (760 °C to 980 °C) range for short times at temperature. The purpose is to soften the material after forming operations while maintaining a relatively fine grain size.

//// Annealing should be done in an atmosphere as free of sulfur compounds as possible as sulfur will embrittle the material in extended exposure time at the anneal temperature range.

//// Low temperature stress relief may be conducted on cold deformed material by heating to approximately 575 °F (300 °C) for 1 to 3 hours.

//// A large percentage of Alloy 400 is put into service without a final heat treatment. This is done to increase the strength of the material.

//// Alloy 400 can be readily joined and fabricated. With the proper control of the amount of hot or cold work and by the selection of appropriate thermal treatments, finished fabrications can be produced to a wide range of mechanical properties.

////COLD FORMING

////Alloy 400 exhibits excellent cold forming characteristics normally associated with chromium nickel stainless steels. The alloy has a lower work hardening rate than T301 or T304 stainless steel and can be used in multiple draw forming operations where relatively large amounts of deformation occur between anneals.

////HOT FORMING

//// Alloy 400 is softer than many steels in respect to its resistance to hot deformation. Therefore, it can be hot formed into almost any shape.

////The use of proper temperatures is critical when hot forming Alloy 400. The hot forming temperature range is 1 200 °F to 2 150 °F. For heavy reductions, recommended metal temperature is 1 700 °F to 2 150 °F. For light reductions, the temperature may be taken down to 1 200 °F. Working at the lower temperatures produces higher mechanical properties and smaller grain size.

//// Prolonged soaking at hot working temperatures is detrimental. If a delay occurs during processing, the furnace should be cut back to 1 900 °F and not brought up to temperature until operations are resumed. In no case should the alloy be heated above 2150 °F as permanent damage may result.

//// Heavy forging should not be carried out so rapidly that the metal becomes overheated from working. The use of an optical pyrometer is recommended.

//// Alloy 400 may be joined by a variety of processes including gas tungsten-arc, gas metal-arc and shielded metal-arc processes. In all of these processes thorough cleaning of the joint area is necessary to avoid embrittlement from such sources as lubricants and paints. The material must be free of scale for best welding

////Welding procedures for Alloy 400 are similar to those used for austenitic stainless steels. Neither preheating, nor post weld heat treatment are generally required. Joint design is similar to that used for austenitic stainless steels with two exceptions. The first is the need to accommodate the sluggish nature of the molten weld metal, necessitating a joint design sufficiently open enough to allow fuller filler wire access to fill the joint. The second is the high thermal conductivity and purity of the material which makes weld penetration lower than in austenitic stainless steels.

